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Abstract. We carry out a detailed analysis of the spectral rigidity for integrable systems 
with a view towards understanding the deviations from the universal behaviour (L/15)  in 
systems with degeneracies in orbit actions. In the process, we also investigate the saturation 
region. Our studies show that the energy dependence of &(m) is a better indicator of the 
underlying universality in integrable systems. 

1. Introduction 

There is strong evidence to suggest that the fluctuation properties of the spectra reflect 
the underlying dynamics of the corresponding classical system. The simplest charac- 
teristic of the structure of the energy spectrum is the nearest-neighbour level spacing 
distribution (hereafter referred to as NNLD) P ( s ) .  It was argued by Berry and Tabor 
[ l ]  that for generic integrable systems where the energy contours in action space are 
curved, P ( s )  is given by the Poisson distribution e-'. The levels therefore tend to cluster 
as the behaviour of P ( s )  for small spacings suggests. On the other hand, time reversal 
invariant chaotic Hamiltonian systems are characterized by a level repulsion. The 
numerical study of Bohigas et a/  [ 2 ]  strongly indicates that the NNLD of such systems 
follows the Wigner distribution, a result known to be true for complex systems having 
many degrees of freedom. Extensive studies [3-S] on several two-dimensional stochastic 
systems have since confirmed this belief. 

Higher-order correlations however contain more information. Among the useful 
ones is the A, statistic of Dyson and Mehta [6], often referred to as the spectral rigidity. 
It is defined as the average of the mean square deviation of the integrated density of 
states, N ( E ) ,  from the hest fitting straight line, a + ba, in an interval [x - L / 2 ,  x+ L / 2 ] ,  
where L is the length of the interval along the spectrum in units of the average level 
spacing. The averaging is over the spectrum or ensemble or a combination of both. It 
is the first spectral measure for which a theory based on Gutzwiller's periodic orbit 
sum rule [ 7 ] ,  was put forward [SI. According to Berry [SI, & ( L )  should display a 
universal behaviour for L<< L,,, ( = h ( d ) /  Tmi,, where Tmi. is the period of the shortest 
orbit and ( d )  is the average density of states) as a consequence of the properties of 
long periodic orbits. Within this framework, the following universal behaviour is 
proposed: for generic integrable systems, & ( L )  = L / 1 5  while for chaotic systems with 
time reversal symmetry, &(L) = l n ( L ) / 7 i Z  -0.006 95. In the latter case, the universality 
is valid in the region l e  L<< L m m x .  For values of L>>L,, , ,  &(L)  saturates non- 
universally. The averaging in this case is over the spectrum. 

n305.4470/91/081825+ 11$03.50 0 1991 IOP Publishing Ltd 1825 
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Most systems in nature however do  not belong to these extreme categories. For an 
N-dimensional generic Hamiltonian system, the phase space is mixed. Berry and 
Robnik [91 suggest that the spectral fluctuations should result from independently 
superposing a Poisson spectrum with relative weight v and a series of GOE spectra 
corresponding to disconnected chaotic regions of phase space with relative weight fit 
( v  +XF, = 1) where v and i;( are assumed to be proportional to the Liouville measure 
of the regular and chaotic regions of phase space. Their claims have been subjected 
LU ~ C Y S L ~ I  Y G I I I I ~ ~ U U I I S  wiiu  iiiinrju I C U I L D .  TUC ircarry iirrcgraurc byarcma, \ v  small, ~ n c  
fit is not so good [IO, 111 and the more heuristic Brody distribution [12] is preferred. 

In recent years however, the universal properties of the eigenvalue spectrum of 
generic integrable systems has come under close scrutiny. There are reasons to believe 
[13] that a system specific character shows up in the spectral statistic (at least NNLD) 

of these systems and hence i t  is imperative to reconsider what is universal in the 

This naturally has important repercussions on the spectral statistics of nearly integrable 
systems and might lead to a better understanding of the deviation from the Berry- 
Robnik distribution mentioned earlier. 

In the following, we study the spectral rigidity, A,, for integrable systems. We show 
that for systems where degeneracies in orbit actions (not necessarily due to symmetries) 
exist, departures frnm the L/?5 behaviour are to be expected as C;IE be exp!ained ofl 
the basis of the periodic orbit theory of Gutzwiller. Moreover, since these deviations 
are strongly system dependent, we investigate the saturation region ( L  >> L,,,) and 
show that there exists a fundamental property that can be used to characterize integrable 
and chaotic systems. We support these results with extensive numerical studies on 
billiard systems. We also make a few remarks about the spectral measures in chaotic 
systems with degeneracies in periodic orbit actions. 

The paper is organized along the following lines. In section 2 we review some of 
the previous results on the nearest-neighbour-level statistics of integrable systems and 
arrive at an appropriate form for the spectral rigidity in case of integrable systems 
with degeneracies in orbit actions. We substantiate our results with numerical studies 
on billiard systems. In section 3, we show that the energy dependence of its saturation 
value, &(m), can be used as a characteristic to distinguish between integrable and 
chaotic systems. Our numerical results for the Bunimovich stadium billiard and rec- 
tangular billiards are discussed in the following section. Finally we discuss our results 
and make some pertinent remarks in the concluding section. 

.^ :CA-.:-..- __.:.L _:__--I --"..I." r ------ I . . :  -.---- LI^ I~ .-.. **, .L. 

..-,...e..+., nf ~ i n - - . , n l , . ~ .  L.PII,.P.ICPC nf n~ .ont . .m r.,rtnmr r h n r  07- ~ l n ~ e ~ . - ~ l l . ,  :..+anr-hln 
p L U p A L J  "1 .+'.6b..*Y1"C "Cy""."'" U L  y Y Y " L Y . "  " J a L C L L L "  L L . P L  O l r  "L.I""1C"L,J " 1 L L 6 1 P V 1 C .  

2. Spectral statistics of integrable systems 

The integrated density of states, N (  E ) ,  of a quantum system consists of two parts. 
Superposed on the average smooth part (the Thomas-Fermi term) is the non-analytic 
fluctuating contribution. Thus 

N ( E ) =  N d E ) +  N d E ) .  (2.1) 
TL. C_^. -.-- :.. ._ :- ̂ C.L^ ,,-.......n, a.." ... ̂, :" t,. ..pm_./D +LO "./P.nnP trnn,i , , ,c ,,IS, srcp 11, a,, ar,ary>r> U, L l l C  J p ' C b L l n ,  ,,UC,"'l,I"IID I., L U  Ir.11V.r L l l r  P"*.Y6C ..I.." 

in order to characterize and compare the fluctuations of different systems whose 
corresponding average behaviours are not the same. This process, known as 'unfolding', 
can be achieved through the mapping 

E ;  = N a v ( E j ) .  (2.2) 
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The sequence E, thus obtained has a mean spacing equal to unity independent of the 
particular form of the function N,. 

The simplest statistical measure of this new sequence is the nearest-neighbour 
spacing distribution, P ( s ) .  It is defined such that P ( s )  ds = probability of finding 
adjacent points ( j , j + l )  with a spacing ( & , + , - E , )  lying between s and s+ds. 

Berry and Tabor [l] give strong arguments to show that in generic integrable 
systems, where the energy contours in action space are curved: the levels are uncorre- 
lated and P ( s )  is simply the negative exponential, e-', characteristic of a Poisson 
process. The simplest example of a non-generic case is the two-dimensional harmonic 
oscillator where the distribution of spacing is strongly dependent on the number 
theoretic properties of the frequencies. 

The Poisson result has been subjected to several verifications but its universal nature 
has remained in doubt. The first deviations were observed by  Berry and Tabor [ 13 for 
rectangular billiard systems where the results hold only when 01 = a2/b2  is irrational. 
The difference in behaviour is attributed to the fact that the classical orbits picked out 
by the quantum condition are all closed when (I is rational while they are never closed 
when it is irrational. The former case is then referred to as non-generic (thus we are 
forced to redefine what genericity means). While discussing the A3 statistic however 
we shall show that the explanation tendered is inconsistent. 

Recently Shudo [13] bas examined the dependence of the arithmetic nature of n 
in the NNLD for (i) the rectangular billiard having energy eigenvalues 

E, , , ,=m2+an2 (2.3) 
and (ii) the integrable version of the Morse oscillator system with 

Em," ={2(m + f )  - (m+~)*}+(Z(n+f) /a  -(n+f)'/n2}. (2.4) 

Using the continued fraction expansion of the golden mean (a- l ) / Z ,  he has studied 
the frequency of degeneracies and the N N L D  for various convergents of n with the 
following conclusions. 

(i) The ratio of degeneracies is much higher for the billiard system. Also no 
degeneracies were observed above the 15th convergent in the billiard system while 
they disappeared around the 9ih convergent in the Morse osciiiaror sysiem. 

(ii) For the lower convergents considered (3rd and 6th), the level spacing distribu- 
tion shows a system specific nature and strongly reflects the formula of the eigenvalue 
sequence. 

(iii) Though the NNLD gradually approaches the Poisson distribution for success- 
ively higher convergents in both cases, the previous observations suggest that no limiting 
distribution exists. 

Thus even if energy contours form a curved surface, different types of distributions 
appear in accordance with the arithmetic nature of (I. 

The system specific behaviour of the N N L D  naturally leads to the question whether 
a similar behaviour persists in higher order correlations as well. Amongst the well 
studied ones, is the spectral rigidity A3 defined as 

L / 2  

d e [ N ( x + e ) - a  - bel2 

wherethe( )denotesanaverageoverthespectrumorensembleoracombinationofboth. 

d ( E )  = ( d ( E ) ) +  dos,(E) (2.6) 

The semiclassical spectral density, d ( E )  can be written as 
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where d,,,(E) is a sum over classical periodic orbits each of which given an oscillatory 
contribution. According to Gutzwiller 

dosc(E)=(l/fi’+l)L Aj(E)exp(iS,(E)/h) (2.7) 
where p = (N - 1)/2 for integrable systems, N being the degrees of freedom. Using 
(2.7) and (2.5) one arrives at a semiclassical expression for the spectral rigidity [SI 

where 

yj = L7;/2h(d) F(Y) = sin(y)/y 7; =dSj/dE (2.9) 

compared with E. An important ingredient at this juncture, which leads to the L/ lS  
behaviour of A,, is the assumption that in the case of integrable systems, the process 
of averaging washes out the off-diagonal terms and hence the expression for the sum 
of orbit amplitudes arrived at by Berry and Tabor [ l ]  and subsequently by Hannay 
and Ozorio de Almeida [I41 can be used for L<< Lax. For systems with degeneracies 
in orbit actions, however, off-diagonal terms contribute substantially as we shall now 
show. 

. .  ~ i i d  ihi- Z<ciagiiig is wi-i iiii i i i t e i~ i  that is kig coiiipiiii-6 wiih Lmsx biii siiia:: 

For integrable systems, (2.8) can be written as 

&(L)  = (2/fiN-’) (dT/TZ)+(T)G(LT/2(d)h) (2.10) 

... L.~.. 
W I L C K  

+ ( T )  = (1 I+ A,A,, cOs{(sM, -s~,)/*MT-IT,,+ 7 4 / 2 1 )  (2.11) 
i j  

G(y)  = 1 -sinZ(y)/y2-3(y cos(y) -sin(y))*/y* (2.12) 

and Mk denotes the winding number {MIk, M,, ,  . . . , MNk}  around the N-torus. The 
+ sign on the summations denotes a restriction to positive traversals only. 

In order to fix our ideas, we consider an orbit action which is threefold degenerate. 
Thus there exist three distinct vectors, say M , ,  M 2 ,  M, such that the orbits have 
identical periods and hence equal amplitudes as well. As a consequence, there would 
be nine terms in + ( T ) ,  each of which would contribute equally. However, if only the 
diagonal terms in +( T )  are considered, six of the nine terms would be dropped, leading 
to the erroneous conclusion that & ( L ) =  L/15. The off-diagonal terms of degenerate 
orbits can however be incorporated in the diagonal sum 

+D(T)=EAXS(T-TM) (2.13) 

by multiplying each term by the degree of degeneracy. Thus, if M , ,  M2 and M ,  are 
such that the periodic orbits are degenerate, their contribution to +( T )  can be written 
as 

3[ AL,S( T - T M , )  + AL,S( T -  TMJ + A.L,S( T -  TMJI 

since each term contributes equally. In the general case of n-fold degeneracy the factor 
3 is replaced by n. Thus 

h(r1 =T * . A ? ~  x i r -  r~~ 1 @!4) Y ,  1 I ~ L ‘.I. - M , ” \ .  1 M, I .  
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Not all n,'s are equal however and in general it would be erroneous to replace +( T )  
by naV+d T )  since the average local degeneracy varies with the length of the periodic 
orbit. However, since the orbit selection function, G ( y ) ,  picks the periodic orbits which 
contribute to &(L), one can, to a first approximation, take the local average of their 
degeneracies for each value of L. In the region Lc< L,,,, G ( y )  ensures that only long 
periodic orbits contribute and hence the asymptotic result of Berry and Tabor [l]  for 
the sum of orbit amplitudes 

&(TI + ( d n / d E ) / ( 2 ~ ) ~ + '  (2.15) 
can be used. Thus for degenerate systems, 

&(L)  = n,,(L)L/ 15 (2.16) 

where nmv( L )  denotes the average degeneracy of those periodic orbits which contribute 
to the spectral rigidity at a given value of L. 

In order to verify these results, we have considered rectangular billiards with rational 
a. The energy eigenvalues are given by (2.3).  The orbit periods TM can be expressed 
as 

TM = [2m(M:,a'+ M:,b')/E]'/ '  

= b [ 2 m ( M : , n + M : , ) / E l 1 / '  (2.17) 

where a and b denote the lengths of the two sides and CY = a 2 / b 2 .  The arithmetic 
properties of the orbit periods and energy eigenvalues are hence identical for the 
rectangular billiard. For sufficiently low approximants of irrational a, degeneracies 
abound and thus the system is ideally suited for the verification of our results. 

We have computed the &, statistic for three approximants of a =e,  namely (i) 
a = 3, (ii) a = 8/3 and (iii) a = 109 601/40 320. The levels obtained from (2.3) have 
been unfolded using the Weyl formula for the integrated density of states. The new 
sequence of levels obtained through the mapping e, = N.,(E,) have a mean spacing 
unity. The averaging in all three cases is in an interval [ E  - P E ,  E + A E ]  where E = 20 000 
and A& = 1000. The interval is sufficiently large to kill the oscillatory off-diagonal terms. 

Figure 1 shows plots of &(L)  for the three values of a mentioned above. The full 
line denotes the L/15 behaviour. The curves 1 and 2 start off initially with a slope 
greater than 1/15 hut flatten out gradually indicating a gradual decrease in the value 
of naV(L). However since the degeneracies in the second case are lower, curve 2 lies 
closer to the full line. Curve 3 shows the spectral rigidity for the 9th approximant of 
a =e. Since the degeneracies in orbit actions are fewer still, &(L)  approximates L/15 
quite well. 

In order to get a better idea of the underlying phenomenon responsible for the 
change of slope observed above, we have computed the mean degeneracy, n,,, as a 
function of L. The orbits considered for the averaging at a particular value of L is 
picked by the selection function G ( L T / Z h ( d ) ) .  Our results for the three values of a 
considered above are shown in figure 2. While curve 3 remains steady around 1.0, the 
average degeneracy in the first two cases gradually decreases with L. This is in keeping 
with the behaviour observed in figure I .  

The correspondence between the nearest-neighbour-level statistics and the spectral 
rigidity is apparent in integrable billiard systems. This is due to the fact that the 
arithmetic properties of eigenvalue sequences and orbit periods are identical. For 
separable integrable systems with smooth potentials of the form 

"(2mI (XI, X,)=C,X(12m)/2+C2X!2m)/2 (2.18) 
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L 

Figure 1. The spectral rigidity, A,, for the (1) second (+++I  (2) fourth (000) and (3) 
ninth ( x x x )  approximant of @ = e .  The solid line denotes the L / l S  behaviour. Curves I 
and 2 start with slopes that are high initially but register a gradual decrease. Curve 3 
however approximates the Poisson behaviour quite well. 

2 3p1 O 0  

- - -2 ~ ~ ~ ~ ~ y o ~ y o o o  

6 

, ..I~LU_L~~~I..L.X.lr~X~I..~.~.~~~~~~. 

0 2 4 6 8 10 
L 

Figure 2. The mean degeneracy, nsv3  of the periodic orbits as a function of  L. The orbits 
considered at each L value is decided by G ( y ) .  Curves I ,  2 and 3 are as in figure 1. While 
curve 3 remains steady around I ,  the average degeneracy for the 2nd and 4th approximant 
decreases gradually with L. 

the energy eigenvalues are given by 

EM = Y d M ,  + .JP + Y2( 4 + a*) (2.19) 

where p = ( Z m ) / ( m + l )  and lies between 1 and 2. The factors yI and y 2  depend on 
cI and c2 while aI, a2 are the Maslov indices. For rectangular billiards, p = 2 .  The 
orbit periods on the other hand can be expressed as 

(2 .20)  TM = 27rE"P[(M,/y,)P/'-l+ ( M2/ y 2 )  " lP - ' ]  p - ' i p .  

The exponents of the M, are different for the energy eigenvalues and orbit periods in 
general and hence their arithmetic properties differ. With a judicious choice of p,  y ,  
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and y z ,  it is possible to have T,'s of the form 

r ,  =2rr~"-'/"y;-1[(~,)"+~(~,)"]1'" (2.21) 

where n and I are integers. The corresponding expression for energy eigenvalues is 

(2.22) 

Though equation (2.21) looks simple enough, not much is known about their arithmetic 
properties for n > 2. However, the above expressions do  suggest that degeneracies in 
orbit periods are higher than in case of energy eigenvalues and hence a situation may 
arise where the NNLD closely approximates a Poisson distribution hut the spectral 
rigidity shows deviations from L/15. We have investigated systems with n equal to 3 
and 4. The values of i chosen were i and 2 in both cases. While the nearest-neighbour- 

though visibly different for I equal to 1 and 2, were small. A similar behaviour is seen 
for the number variance. This suggests that though individual orbits may he degenerate, 
the mean degeneracy remains close to 1 for systems with 1 < p i 2 .  

Finally, we investigate the limit h + 0. It is clear from our analysis that off-diagonal 
terms arising from degenerate orbits survive in the semiclassical limit. Moreover, with 
increasing energies, the selection function, G ( y ) ,  picks orbits of longer lengths at a 
given value of L. Since their average degeneracies are higher, the deviations get more 
pronounced in the semiclassical limit. 

A similar analysis holds for the number variance and nearest-neighhour spacing 
distribution as well where terms identical to +( T) occur. The off-diagonal terms are 
necessary to account for the deviations. (In the case of the nearest-neighbour spacing 
distribution, (3.11) in [ I ]  has to be replaced by the more general expression for n ( K )  
(essentiallythe same as q5( T ) )  which includes the off-diagonal terms as well). Deviations 
for the Poisson behaviour are hence to he expected in systems with degeneracies in 
orbit actions. 

While we have restricted ourselves to integrable systems in the present work, we 
would like to remark that these ideas apply for chaotic systems as well. For systems 
with degeneracies in the periodic orbit actions, the diagonal approximation has to he 
suitably modified (in the region where it holds; for larger lengths off-diagonal terms 
are necessarily included and the semiclassical sum rule of Berry [SI has to he used) 
to account for the off-diagonal terms arising from degenerate periodic orbits. Thus 
deviations from their known universal behaviour are to he expected. A useful example 
is 
There are very strong degeneracies amongst the periodic orbits and deviations in both 
the N N L D  and spectral rigidity are observed. A similar situation arises in the hyperbola 
billiard as well (figure 16 in [161). 

The preceding analysis therefore conclusively shows that degeneracies in orbit 
periods give rise to deviations in the spectral rigidity, A3 from its known 'universal' 
behaviour. These survive at higher energies and moreover become enhanced. It is easy 
to verify that similar system-specific behaviour occur in the number variance, X2 as well, 

On the other hand, it is expected that integrable systems should possess some 
universality which distinguishes them from non-integrable systems in  general. With 
this in mind, we investigate the region L>> L,,, in the following section and show that 
the energy dependence of &(CO) can indeed he used as a universal characteristic, 
app,,&dV,L L" d,, C d J C 3  W11V1S L l l L  L"CL&Y .."..."".I 1.. "IC."..  "yY" "1- U". . C Y  ,6""..C,. 

d n - 1  , i n - ,  EM = y2[(M1 +a,) I + ( M , +  a*) +'I. 

level statistics fitted well to a Poisson in all four cases, the deviations for the A3 statistic, ,I 

(jynriieirii) Hadamaid-Giiizwi::ei inode: disciissed by kciich aiid pLeinei [q, 

---#:--L3a.- - # I  --I-- .. .Lo-- +ha L.-~-n.l n ~ n t ~ . . r r  ir. n r t i ~ n  O I ~ ~ P  ~ I P  r . . - r n r l  Innnn.i-1 



1832 D Biswas et al 

3. Energy dependence of &(a) for integrable and chaotic systems 

An important fallout of Berry's semiclassical derivation of the spectral rigidity was the 
prediction of the non-universal saturation region for values of L >> L,,, . It follows as 
a direct consequence of the saturation of the orbit selection function, G ( y ) ,  mentioned 
earlier (for a plot of G ( y ) ,  see [SI). Such a behaviour had been observed earlier for 
iiiiegrabie biliiard systems [ i i j  and has been verified since For separabie sysiems in 
general [18I. Recently Aurich and Steiner [SI have been able to observe the saturation 
phenomenon in the Hadamard-Gutzwiller ensemble. 

As in the region L<< L,,,, degeneracies in the actions of short periodic orbits affect 
the magnitude of the saturation value, &(a). Thus, for the square billiard (a = I ) ,  the 
saturation value at a given energy is nearly double that for rectangular billiards with 
a close to 1. The appropriate expression for &(a) in case of integrable systems is thus: 

& ( a ) = ( 2 / f i N - ' ) x  n,A',,/T',, (3.1) 

where the sum is over all periodic orbits. Since the orbit parameters A, and T, are 
strongly system dependent, the saturation value itself is non-universal. Its energy 
dependence however contzins lvitz! informition aboct ?he natGre ofthe periodic erbits 
in the system and hence can be used to characterize integrable (periodic orbits occurring 
in (N-1)-parameter families) and chaotic systems. It is implicitly assumed in the 
following that all periodic orbits in the latter case are isolated. The occurrence of 
(N-1)-parameter family of periodic orbits in chaotic systems leads to certain con- 
sequences which will be discussed in the following section. 

For N-dimensional integrable systems with separable potentials of the form 

V'*"'(X, . . . XN) = CjX!2" (3.2) 

the energy dependence of the spectral rigidity for L >> L,,, is given by [ 171 

&(a)- (N(E)) 'N-"/N (3.3) 

where N ( E )  is the integrated density of states at an energy E. The mapping E~ = N ( E , )  
allows us to write (3.3) as 

&(a)- E ' N - ' ) I N  (3.4) 

&(a) - E ' / * .  (3.5) 

where B is the unfolded energy of the system. For two-dimensional systems therefore 

The result holds for all generic integrable systems. 
For chaotic systems with time reversal symmetry, the behaviour is totally different. 

As in the integrable case, there exists a saturation region for L>> L,,, and the pre- 
dominant contribution comes from the short orbits. The averaging procedure does not, 
however, eliminate all the off-diagonal terms. For i >> L,,,, the rigidity saturates 
non-universally at a value approximately given by [SI 

&(CO) = In( e~, , , ) /~* -0 .125 (3.6) 

where L,,, = 2 a /  Tmi. (we have put h 2 / 2 m  = ( d )  = 1). Thus for billiard systems, 

&(a) - 1 n ( 4 a e a /  l 0 ) h 2  - 0.125 (3.7) 
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where I,, is the corresponding length of the shortest periodic orbit. Thus the energy 
dependence of the rigidity can be expressed as 

(3.8) Ai( m) - In(E ) ' ' 2 w 2 +  c 

In terms of the unfolded energy 
where C is a constant independent of energy 

- 
(3.9) A ,-, , - , x r - , ,  ,\l,Z*l ui(wl-Lrrl(lv (€]) ' +c. 

For two-dimensional chaotic billiards 

&(CO) - l n ( ~ ) " ~ " ~ +  D (3.10) 

where D is a constant independent of energy. 
The characteristic that we wish to investigate, rests on the formulae given by (3.5) 

and (3.10). In other words, the energy dependence of A,(co), can indeed be used to 
distinguish integrable systems from the chaotic ones. Thus while in case of generic 
integrable systems the spectral rigidity for L>> L,,, is proportional to it has a 
logarithmic dependence on the unfolded energy for chaotic systems with isolated 
unstable periodic orbits. We support these claims numerically in the following section. 

4. Numerical results and discussions 

In the following, we present our numerical results for billiard systems. As representatives 
of integrable systems, we have considered the rectangular billiard with (1) a = 1 and 
(2) a = 8/5. We have computed &(CO) at L = 120. It is easy to verify that the spectral 

has been carried out in an interval [ e  - 8e, E + a&], where B E  has been chosen to be 
150 and B is the unfolded energy at which &(CO) is calculated. Our results are shown 
in figure 3. The linear variation with & is obvious in both cases. The fluctuations at 

indeed Sai"raiej ai value for the considered range of energy, Tne averaging 

b.o 1- 

3.6 
- 
8 
14 

- " 
2 .L  

14 18 12 26 30 34 
k 

Figure 3. The saturation value or the spectral rigidity &(a) for the rectangular billiard 
with (1) CI = 1 and (2) a = 8 1 5 ,  plotted as a function of k = &. The averaging is over an 
interval[c" -Se, e " + S ~ ] w h e r e S ~  = ISO.Thelineardependenceon k=&isquiteabvious 
in both cases. The mild Ruccuations at higher energies are the remnants of the oscillatory 
off-diagonal terms in equation (2.8) which are washed out by the averaging procedure. 
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higher energies are due to the remnants of the oscillatory off-diagonal terms. These in 
fact vanish if the interval of averaging is increased. The higher slope in the first case 
is due to the smaller value of a. 

Equation (3.5) thus provides a signature that is universal for integrable systems 
irrespective of the nature of degeneracies in the orbit actions. A few remarks are, 
however, in order. Isolated orbits do occur in integrable systems as well. The periodic 
orhit joining the mid-points of the sides of an equilateral triangle billiard is one such 
example. In general these arise in systems with discrete symmetry ( q ' =  P,q) when a 
single or a combination of a few parity classes are considered. For example, in systems 
with axes inversion the eigenstates can he classified under four parity classes and the 
respective Green function takes the form 

o++ = ( a I  + a,+ a,+ a 3  
0-+ = ( a ,  - a,+ a3 -  a 3  

G++= ( a , + a , - a , - a J  

G _ _  = ( a ,  - a 2 -  a ,+a , )  

where 

a ,  = G(x, Y ;  x, Y )  a 2 = G ( - x , y ; x , ~ )  

a,= G(x,  - Y ;  X, Y )  a , = G ( - x , - y ; x , y ) .  

In order to calculate the contribution to G ( P , q ,  q ;  E ) ,  only classical trajectories located 
on or near a part of the periodic trajectory passing through the phase space points 
( q , p )  and (P ,q ,P; 'p )  need he considered. Thus at times a single (isolated) orhit 
occurring in a one-parameter family may satisfy this condition. 

The occurrence of these isolated orbits however, has little effect on the linear 
dependence of &(CO) on &. We have verified this in case of the equilateral triangle 
billiard. On the other hand, the occurrence of an ( N  - ])-parameter family of periodic 
orbits in chaotic systems affects the saturation value of the spectral rigidity and also 
its energy dependence. This can he seen in the Bunimovich stadium billiard where all 
periodic orbits are isolated with the exception of the bouncing ball modes (periodic 
oscillations between the straight edges). The latter variety contributes an amount equal 
to 

( 2 m /  f i  2)1/2a21(  3) E "'/ 8 ?r3 b 

to the spectral rigidity. Here 'a' is the length of the parallel sides and 'b' is their 
separation. The quantity C ( 3 )  is equal to X(l/n3)).  In  comparison with the contribution 
of the isolated orbits, this is quite large and moreover dominates the saturation at  
higher energies. 

We have computed &(CO) for the odd-odd parity mode of the stadium billiard at  
L = 100 and with SE = 150. The saturation value in the range E = (345,370) varies 
between 0.52 and 0.53 with minor fluctuations in between. Part of this comes from the 
bouncing ball modes which for this parity mode is equal to 

(2m/ f i  2)1/2a24'( 3 )  E ' I 2 /  16n'b. 

Its contribution therefore varies between 0.230 and 0.238, the remainder being due to 
the isolated orbits, Moreover, the increase in the value of &(W), is due mostly to these 
bouncing ball modes. 

Thus, the presence of ( N  - 1)-parameter family periodic orbits in chaotic systems 
affects the saturation value and its energy dependence. 
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5. Conclusions 

In the preceding sections, we have made a detailed study of the spectral rigidity for 
integrable systems with a vi 2w towards understanding the deviations from the universal 
behaviour (L/15) in systems with degeneracies in orbit actions. In the process, we 
have also investigated the saturation region and shown that the energy dependence of 
&(a) is a better indicator of the underlying universality in integrable systems. 

Our conclusions can therefore be summarized as follows. 
(i) We have shown that the diagonal approximation to q5( T )  is inadequate for 

systems with degeneracies in orbit periods. The off-diagonal terms corresponding to 
degenerate orbits can however be incorporated in the diagonal sum q5”( T ) .  To a first 
approximation, & ( L ) =  n,,(L) L/15 where n,,(L) is the mean degeneracy of orbits 
which contribute to the spectral rigidity. Moreover the deviations are system specific 
and survive at high energies. 

(ii) We find that the energy dependence of its saturation value is a better indicator 
of the underlying universality in generic integrable systems, where, h,(m) - E ”’. On 
the other hand, the saturation value in chaotic systems with isolated periodic orbits, 
has a logarithmic dependence on energy. 

Since terms identical or similar to $( T )  occur in the number variance, Z2, and the 
nearest-neighbour-level spacing distribution, P ( s ) ,  deviations in these spectral 
measures are also due to the degeneracies in orbit actions. 
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